Non-conductive ferromagnets based on core double-shell nanoparticles for radio-electric applications
نویسندگان
چکیده
Two fabrication schemes of magnetic metal-polymer nanocomposites films are described. The nanocomposites are made of graphene-coated cobalt nanoparticles embedded in a polystyrene matrix. Scheme 1 uses non-covalent chemistry while scheme 2 involves covalent bonding with radicals. Preservation of the net-moment of cobalt and electrical insulation are achieved by means of a core double-shell structure of cobalt-graphene-polystyrene. The graphene shell has two functions: it is a protective layer against metal core oxidation and it serves as the functionalization surface for polymer grafting as well. The polystyrene shell is used as an insulating layer between nanoparticles and improves nanoparticles dispersion inside the polystyrene matrix. The theoretical maximum volume filling ratio estimated at ~30 % is almost reached. The nanocomposites are shown to undergo percolation behavior but retain low conductivity (<1 S/m) at the highest filling ratio reached ~25 % leading to extremely low losses (10(-3)) at high frequency. Such low conductivity values are combined with large magnetization, as high as 0.9 T. Ability for radiofrequency applications is discussed in regards to the obtained magnetization.
منابع مشابه
Electro-Thermo-Mechanical Vibration Analysis of a Foam-Core Smart Composite Cylindrical Shell Containing Fluid
In this study, free vibration of a foam-core orthotropic smart composite cylindrical shell (SCCS) filled with a non-viscous compressible fluid, subjected to combined electro-thermo-mechanical loads is investigated. Piezoelectric polymeric cylindrical shell, is made from polyvinylidene fluoride (PVDF) and reinforced by armchair double walled boron nitride nanotubes (DWBNNTs). Characteristics of...
متن کاملCore/Shell structured nanoparticles for imaging and therapy
Introduction: Nanoparticles have several exciting applications in various fields of biomedicine. It has been found that among different classes of nanoparticles core/shell is most promising for field of nano-medical imaging and therapy due to their distinct advantages. The core/shell type nanoparticles can be generally comprising of two nanoparticles one act as a core (inner ma...
متن کاملSynthesis and Characterization of a Novel Fe3O4-SiO2@Gold Core-Shell Biocompatible Magnetic Nanoparticles for Biological and Medical Applications
Objectives: The study of core-shell magnetic nanoparticles has a wide range of applications because of the unique combination of the nanoscale magnetic core and the functional shell. Characterization and application of one important class of core-shell magnetic nanoparticles (MNPs), i.e., iron oxide core (Fe3O4/γ-Fe2O3) with a silica shell and outer of gold (Fe3O4-SiO2@Gold (FSG)) in Boron Neut...
متن کاملCore-shell nanoparticles for medical applications: effects of surfactant concentration on the characteristics and magnetic properties of magnetite-silica nanoparticles
Objective(s): The use of cationic surface-active agents (surfactant) in the synthesis of nanoparticles, with formation of micelle, can act as a template for the formation of meso-porous silica. Changes in the concentration of surfactants can affect the structures and properties of the resulting nanoparticles.Materials and Methods: Magnetite nanoparticles were prepared as cores using the c...
متن کاملAn Overview of Cobalt Ferrite Core-Shell Nanoparticles for Magnetic Hyperthermia Applications
Cobalt ferrite nanoparticles (CoFe2O4) are well known for some distinctive characteristics such as high magnetic permeability and coercive force, good saturation magnetization, excellent physical, and chemical stability, which make them so attractive for magnetic storage, magnetic resonance imaging (MRI), drug delivery, optical-magnetic equipment, radar absorbing materials...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2016